An ultrahigh affinity d-peptide antagonist Of MDM2.

نویسندگان

  • Changyou Zhan
  • Le Zhao
  • Xiaoli Wei
  • Xueji Wu
  • Xishan Chen
  • Weirong Yuan
  • Wei-Yue Lu
  • Marzena Pazgier
  • Wuyuan Lu
چکیده

The oncoprotein MDM2 negatively regulates the activity and stability of the p53 tumor suppressor and is an important molecular target for anticancer therapy. Aided by mirror image phage display and native chemical ligation, we have previously discovered several proteolysis-resistant duodecimal d-peptide antagonists of MDM2, termed (D)PMI-α, β, γ. The prototypic d-peptide inhibitor (D)PMI-α binds ((25-109))MDM2 at an affinity of 220 nM and kills tumor cells in vitro and inhibits tumor growth in vivo by reactivating the p53 pathway. Herein, we report the design of a superactive d-peptide antagonist of MDM2, termed (D)PMI-δ, of which the binding affinity for ((25-109))MDM2 has been improved over (D)PMI-α by 3 orders of magnitude (K(d) = 220 pM). X-ray crystallographic studies validate (D)PMI-δ as an exceedingly potent inhibitor of the p53-MDM2 interaction, promising to be a highly attractive lead drug candidate for anticancer therapeutic development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of a Stapled Peptide Antagonist Bound to Nutlin-Resistant Mdm2

As key negative regulator of the p53 tumour suppressor, Mdm2 is an attractive therapeutic target. Small molecules such as Nutlin have been developed to antagonise Mdm2, resulting in p53-dependent death of tumour cells. We have recently described a mutation in Mdm2 (M62A), which precludes binding of Nutlin, but not p53. This Nutlin-resistant variant is not, however, refractory to binding and inh...

متن کامل

Preclinical study of a new 177Lu-labeled somatostatin receptor antagonist in HT-29 human colorectal cancer cells

Objective(s): Somatostatin receptor-positive neuroendocrine tumors have been targeted using various peptide analogs radiolabeled with therapeutic radionuclides for years. The better biomedical properties of radioantagonists as higher tumor uptake make these radioligands more attractive than agonists for somatostatin receptor-targeted radionuclide therapy. In this study...

متن کامل

D-peptide inhibitors of the p53-MDM2 interaction for targeted molecular therapy of malignant neoplasms.

The oncoproteins MDM2 and MDMX negatively regulate the activity and stability of the tumor suppressor protein p53, conferring tumor development and survival. Antagonists targeting the p53-binding domains of MDM2 and MDMX kill tumor cells both in vitro and in vivo by reactivating the p53 pathway, promising a class of antitumor agents for cancer therapy. Aided by native chemical ligation and mirr...

متن کامل

C-Terminal Substitution of MDM2 Interacting Peptides Modulates Binding Affinity by Distinctive Mechanisms

The complex between the proteins MDM2 and p53 is a promising drug target for cancer therapy. The residues 19-26 of p53 have been biochemically and structurally demonstrated to be a most critical region to maintain the association of MDM2 and p53. Variation of the amino acid sequence in this range obviously alters the binding affinity. Surprisingly, suitable substitutions contiguous to this regi...

متن کامل

Structure-activity studies of Mdm2/Mdm4-binding stapled peptides comprising non-natural amino acids

As primary p53 antagonists, Mdm2 and the closely related Mdm4 are relevant cancer therapeutic targets. We have previously described a series of cell-permeable stapled peptides that bind to Mdm2 with high affinity, resulting in activation of the p53 tumour suppressor. Within this series, highest affinity was obtained by modification of an obligate tryptophan residue to the non-natural L-6-chloro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of medicinal chemistry

دوره 55 13  شماره 

صفحات  -

تاریخ انتشار 2012